An Adaptor Domain-Mediated Autocatalytic Interfacial Kinase Reaction
نویسندگان
چکیده
منابع مشابه
An adaptor domain-mediated autocatalytic interfacial kinase reaction.
This paper describes a model system for studying the autocatalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligan...
متن کاملRate Enhancement of an Interfacial Biochemical Reaction through Localization of Substrate and Enzyme by an Adaptor Domain
This paper describes a model system to characterize the rate enhancement that stems from localization of an enzyme with its substrate. The approach is based on a self-assembled monolayer that presents a substrate for the serine esterase cutinase along with a peptide ligand for an SH2 adaptor domain. The monolayer is treated with a fusion protein of cutinase and the SH2 domain, and the rate for ...
متن کاملConvective fingering of an autocatalytic reaction front.
We report experimental observations of the convection-driven fingering instability of an iodate-arsenous acid chemical reaction front. The front propagated upward in a vertical slab; the thickness of the slab was varied to control the degree of instability. We observed the onset and subsequent nonlinear evolution of the fingers, which were made visible by a pH indicator. We measured the spacing...
متن کاملDensity fingering of an exothermic autocatalytic reaction.
Density fingering of exothermic autocatalytic fronts in vertically oriented porous media and Hele-Shaw cells is studied theoretically for chemical reactions where the solutal and thermal contribution to density changes have opposite signs. The competition between these two effects leads to thermal plumes for ascending fronts. The descending fronts behave strikingly differently as they can featu...
متن کاملBuoyant plumes and vortex rings in an autocatalytic chemical reaction.
Buoyant plumes, evolving free of boundary constraints, may develop well-defined mushroom-shaped heads. In conventional plumes, overturning flow in the head entrains less buoyant fluid from the surroundings as the head rises, robbing the plume of its driving force. We consider here a new type of plume in which the source of buoyancy is an autocatalytic chemical reaction. The reaction occurs at a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemistry - A European Journal
سال: 2009
ISSN: 0947-6539,1521-3765
DOI: 10.1002/chem.200901345